## Essential Math

Lesson Date: April 9th 2020
Lesson: Algebraic Models
Learning Target: Students will incorporate algebraic expressions using mobiles and translate it into equations

## Bell Work

(D) 1, 2, 3 Latin Square

|  |  |
| :--- | :--- |
|  |  |
| 3 |  |

©
50

©
MysteryGrid 0, 2, 4, 6


## Bellwork Answers

(D)

(E)

(F)


Nram an araa mndal and iteo it to mittinly

## Directions

Click through the slides and in a math journal/separate sheet of paper write down your answers.

Feel free to print off the slides as well, but remember the answer key is on the following slide

## Lesson 1.2: Mobiles and Equations

(4) This mobile balances. Use the key to translate it into an equation.

(5) Draw the mobile that would remain if you crossed out one star and one moon on each side.

The same logic about changes that keep mobiles balanced can be used to consider changes that keep equations true.
(6) Do we know if these changes would keep the mobile balanced? Explain your reasoning.


## Lesson 1.2: Mobiles/Equations with Key




Key:
C $=m$
$t=s$
$0=c$
(5) Draw the mobile that would remain if you crossed out one star and one moon on each side.


Write an equation for your modified mobile by using the key to translate.
4
(6) Do we know if these changes would keep the mobile balanced? Explain your reasoning.
Yes, because the same weights were removed from each side.

The same logic about changes that keep mobiles balanced can be used to consider changes that keep equations true.


## Lesson 1.2 Mobiles/Equations with Key

(8) If the equation $s+m+c+m=2 s+m+2 s$ is true, then which of these equations are true? (Mark True or False
(a) $2 s+m+2 s=s+m+c+m$
(b) $4 s+m=2 m+s+c$
(c) $5 s+m=2 m+c$
(d) $s+2 m+c=4 s+m$
(e) $4 s=s+m+c$
(f) $3 s=c+m$

## Key Points

1. Follow your rules
2. 8a. Is just a rewrite of your original equation only reversed so we know it must be true
3. 8 bb . Is the original equation (only with like terms combined and reversed) so we know that it must be true
4. Practice


$$
s+m+c+m
$$ $=$ $\qquad$

## Lesson 1.2 Mobiles/Equations with Key

(8) If the equation $s+m+c+m=2 s+m+2 s$ is true, then which of these equations are true? (Mark True or Falst
(a) $2 s+m+2 s=s+m+c+m$ True
(d) $s+2 m+c=4 s+m$ True
(b) $4 s+m=2 m+s+c$
True
(e) $4 s=s+m+c$ True
False
(f) $3 s=c+m$
True

$$
\text { (unless } s=0 \text { ) }
$$

Combining like terms or using a mirror image is ok just as long as it is consistent with the other side

Example: $\mathbf{a + b}=\mathbf{2 c}$ and the mirror image is $\mathbf{2 c}=\mathbf{a + b}$
Both expressions mean the same thing so both are true
Using the same example of $a+b=2 c I$ can NOT say that $2 c+b=a$
You have to be consistent with what the equation is saying in order to keep it in balance

## Lesson 1.2 Mobiles/Equations with Key

Use this key to choose shapes and translate the mobiles to algebra in problems 9 through 12.

$$
\text { Key: } \boldsymbol{\Delta}=t \quad=c \quad \boldsymbol{=}=h \quad \star=s \quad \forall=k \quad \quad=p
$$

(9) This mobile balances.


Create a new, balanced mobile based on this

(11)

This mobile balances, too.


Create a new, balanced mobile based on this mobile.


Translate both mobiles into equations.
(12) Translate both mobiles into equations.

## Lesson 1.2 Mobiles/Equations with Key

Use this key to choose shapes and translate the mobiles to algebra in problems 9 through 12.

(9) This mobile balances.


Create a new, balanced mobile based on this mobile.


Responses may vary.
(10) Translate both mobiles into equations.

$$
3 c=2 t
$$

$$
3 c+t=3 t
$$

(11) This mobile balances, too.


Responses
Create a new, balanced mobile based on this mobile.

(12) Translate both mobiles into equations.

$$
p+h+k=2 s+h \quad p+k=2 s
$$

Note: In order to create a balanced mobile equal actions had to be taken to both sides

1. In question 9 a triangle was added to the left side, so a triangle had to be added to the right side
2. In question 10 a heart was subtracted from the left, so in order to stay balanced a heart had to be subtracted from the right.

## Practice 1

(13) Based on this mobile, determine if these equations are true or false.

$$
\text { Key: } \quad=h \quad \mathbb{C}=m \quad \star=s
$$

(a) $h+s+s+h=m+m+h$
(b) $2 s+h=2 m$
(C) $6 h+6 s=6 m+3 h$
(e) $3 s+2 h=2 m+h+s$
(d) $2 m+h=h+2 s+h$
(f) $3 h=2 m+2$
(14) Based on the equation $t+2 p+2 s=2 t+3 s$, determine if these equations are true or false.
(a) $t+2 p+s=2 t+2 s$
(b) $3 t+2 p=5 s$
(C) $2 p+2 s=t+3 s$
(d) $t+2 p=2 t+s$
(e) $2 p+5 s=3 t$
(f) $2 p=t+s$

## Practice 1 Answer Key

(13) Based on this mobile, determine if these equations are true or false.

(a) $h+s+s+h=m+m+h$ True
(b) $2 s+h=2 m$

True
(c) $6 h+6 s=6 m+3 h \quad$ True
(d) $2 m+h=h+2 s+h \quad$ True

$$
\text { Key: } \boldsymbol{P}=h \quad \mathbf{C}=m \quad \star=s
$$

(14) Based on the equation $t+2 p+2 s=2 t+3 s$, determine if these equations are true or false.
(a) $t+2 p+s=2 t+2 s$ True
(b) $3 t+2 p=5 s$ False
(c) $2 p+2 s=t+3 s$ True
(d) $t+2 p=2 t+s$
True
(e) $2 p+5 s=3 t$ False
(f) $2 p=t+s$
True

## Practice 2

(20) If the equation $2 x+2 b=c+b$ is true, then which of these equations are true? (Mark True or False.)
(a) $2 x+b=c$
(b) $x+b=\frac{1}{2}(c+b)$
(c) $2 x+b-c=0$
(d) $2 x+3 b=c$
(e) $2 x+2 b-c=b$
(f) $2 x=c-b$
(21) Based on the equation $4 s+t+m=2 t+3 m$, determine if these equations are true or false.
(a) $4 s+3 t=4 m$
(b) $4 s+t=2 t+2 m$
(c) $t+m=2 t+3 m-4 s$
(d) $4 s+m=t+3 m$
(e) $4 s+2 t+2 m=3 t+4 m$
(f) $4 s=t+2 m$

Remember: Keep both sides balanced.

1. Same action must be taken on both sides

20a. One b ( or b)was subtracted from both sides, so both sides remain equal and balanced making 20a. True

## Practice 2 Answer Key

## TOUGH STUFF (Answers to the following problems assume variables do not all equal 0.)

(20) If the equation $2 x+2 b=c+b$ is true, then which of these equations are true? (Mark True or False.)
(a) $2 x+b=c$
True
(b) $x+b=\frac{1}{2}(c+b)$
True
(c) $2 x+b-c=0$
True
(d) $2 x+3 b=c$
False
(e) $2 x+2 b-c=b$
True
(f) $2 x=c-b$
(21) Based on the equation $4 s+t+m=2 t+3 m$, determine if these equations are true or false.
(a) $4 s+3 t=4 m \quad$ False
(b) $4 s+t=2 t+2 m$
True
(c) $t+m=2 t+3 m-4 s$
(d) $4 s+m=t+3 m$ True
(e) $4 s+2 t+2 m=3 t+4 m$ True
(f) $4 s=t+2 m$

20d. $2 x+3 b=c$
$20 d$ is False because $2 b$ was added to the left side of equation, but $2 b$ was not added to the right side making it unbalanced and false.

## Practice 3

(E) This mobile balances. Use the key to translate it into an equation.

$\qquad$ $=$ $\qquad$
(F) Imagine crossing out one star and one triangle on each side. Write an equation for that modified mobile.
$\qquad$
(G) Based on the mobile above in problem E , determine if these equations are true or false.
(i) $2 k+2 t=4 s$
(iv) $2 k=2 s$
(ii) $2 k+s=3 s$
(v) $2 k+t=4 s+t$
(iii) $2 k+t=2 s+t$
(vi) $k=s$

## Practice 3 Answer Key

(E) This mobile balances. Use the key to translate it into an equation.


$$
2 k+s+t
$$

$$
=3 s+t
$$

(F) Imagine crossing out one star and one triangle on each side. Write an equation for that modified mobile.

$$
2 k=2 \mathrm{~s}
$$

(G) Based on the mobile above in problem E, determine if these equations are true or false.
(i) $2 k+2 t=4 s$
False (unless s=t)
(iv) $2 k=2 s$
True
(ii) $2 k+s=3 s$
True
(v) $2 k+t=4 s+t$
False (unless $s=0$ )
(iii) $2 k+t=2 s+t$
True
(vi) $k=s$
True

